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Graphene sheets with regular perforations, dubbed as antidot lattices, have theoretically been predicted to
have a number of interesting properties. Their recent experimental realization with lattice constants below 100
nanometers stresses the urgency of a thorough understanding of their electronic properties. In this work, we
perform calculations of the band structure for various hydrogen-passivated hole geometries using both spin-
polarized density functional theory �DFT� and DFT based tight-binding �DFTB� and address the importance of
relaxation of the structures using either method or a combination thereof. We find from DFT that all structures
investigated have band gaps ranging from 0.2 to 1.5 eV. Band gap sizes and general trends are well captured
by DFTB with band gaps agreeing within about 0.2 eV even for very small structures. A combination of the
two methods is found to offer a good trade-off between computational cost and accuracy. Both methods predict
nondegenerate midgap states for certain antidot hole symmetries. The inclusion of spin results in a spin-
splitting of these states as well as magnetic moments obeying the Lieb theorem. The local-spin texture of both
magnetic and nonmagnetic symmetries is addressed.
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I. INTRODUCTION

Graphene, the single-atom thick two-dimensional sheet of
carbon atoms, has stimulated considerable experimental1 and
theoretical research2 as well as proposals for future
nanodevices.3 Various graphene-based applications have
been realized in recent years4,5 and the relevance for appli-
cation in devices is heavily increased by the rapidly improv-
ing ability to pattern monolayer films with electronic-beam
lithography1 where features on the ten nm scale have been
obtained.6,7 Moreover, recent advances in chemical vapor
deposition of graphene �see e.g., Ref. 8� are promising for
fabrication of large area, high-quality devices.

Yet another way of nanoengineering graphene consists of
defining an antidot lattice on graphene by means of a regular
array of nanoscale perforations. This theoretical idea �see
Pedersen et al.,9,10� who showed using tight-binding calcula-
tions that antidot lattices change the electronic properties
from semimetallic to semiconducting with a significant and
controllable band gap. These changes in the bandstructure
can be experimentally studied by either transport or optical
absorption methods. While the tight-binding calculations of
Refs. 9 and 10 are a convenient way of obtaining qualitative
predictions, they must be bench-marked against some ab ini-
tio method, such as the density-functional theory �DFT�, in
order to fully assess their reliability. Such a comparison is
one of the main goals of the present paper. Unfortunately,
fully ab initio methods become computationally very expen-
sive as the unit cell size increases, and this is the case for
perforations that can presently be achieved. Therefore, there
is a great need for a computational method, which interpo-
lates the accuracy and cost between tight-binding and DFT
theories. In this paper we also investigate one such method,
the DFT based tight-binding approach �DFTB�.

We next briefly assess the experimental situation. Antidot
lattices on graphene with lattice spacings down to 80 nm

have recently been realized experimentally by several
groups. Eroms and Weiss11 report magnetotransport measure-
ments and clearly observe how the antidot lattice modifies
the Quantum Hall effect and the weak localization behavior.
The achievable mobilities for graphene on oxidized silicon
substrates �as is the case in this experiment� are still too low,
and the antidot lattice spacing is still too large to fully reflect
the details of the band-structures we calculate. Shen et al.12

have reported commensurability oscillations in graphene
flakes on SiC substrate, however their geometry did not al-
low an independent determination of the carrier density.
These two experiments are important in demonstrating how
the transport gap due to the antidot lattice affects magne-
totransport measurements. Midgap states, as found for cer-
tain antidot lattices �see Sec. III below�, would be another
important diagnostics for the antidote-induced bandstructure.
These states may be the cause of a metal-insulator transition,
as recently revealed by an experimental study of ion-induced
defects.13 Perhaps the most direct means of studying the
antidot-induced gap would be to perform infrared optical ab-
sorption measurements. We are not aware of any optical ex-
periments on antidot lattices on graphene. However, very
recently an experiment addressing the optical gap in an elec-
trically gated bilayer graphene was published.14 We have re-
cently considered the generic features of optical absorption
in gapped graphene using a phenomenological approach,10,15

and a quantitative comparison between experiments and an
ab initio theory for optical absorption would be most useful.

Experiments are available for several other nanostructures
based on graphene. Quantum dots and graphene ribbons have
been demonstrated with dimensions of only a few nm.16 Very
recently, Girit et al.17 studied the dynamics at the edges of a
growing hole in real time using a transmission electron mi-
croscope. Both in the experiment and in Monte Carlo simu-
lations they find the zigzag edge formation to be the most
stable structure. This is in agreement with the findings of
Jia et al.18 who demonstrate a method to produce graphitic
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nanoribbon edges in a controlled manner via Joule heating.
This opens the possibility of making antidot lattices with a
desired hole geometry. Experiments of this kind are highly
relevant for ab initio modeling of perforations in graphene
because they provide information about the microscopic
structure of the edge of the perforation; this is a necessary
input for any quantitative modeling.

While carbon nanotubes, grapheme, and recently
graphene ribbons have been studied extensively using first
principles methods, antidot lattices in graphene have mainly
been treated with simpler models.9,19 The very recent work
by Vanevic et al.19 uses a �-orbital tight-binding model to
study antidot lattices with rather large lattice constants �these
systems are more easily accessed experimentally but cannot
be analyzed in terms of ab initio methods�. Their focus is on
the possible occurrence of midgap states without introducing
defects in the antidot lattice, as was the case in the original
proposal by Pedersen et al.9

Many studies on magnetization have been reported for
various graphene structures.20–27 The origin of the magne-
tism can be understood based on the theory by Lieb,20 and
the subsequent related work by Inui et al.28 on the properties
of the bipartite lattice. Single vacancies and their spin prop-
erties have been studied by, e.g., Lehtinen et al.21 and Pala-
cios et al.;22 the latter paper also investigates voids in both
graphene and graphene ribbons in detail using a mean-field
Hubbard-model. Magnetization has also been studied in
carved slits,23 finite ribbons24 and flakes24,25 as well as
rings29 and notches.30 Recently, DFT treatments of magnetic
properties of nanoholes in graphene31 and graphene films32

have been published.
The realized antidot lattices with hole sizes of several tens

of nanometers and even larger lattice spacings involve sev-
eral thousands of atoms in a unit cell and are computation-
ally too costly to be treated with DFT in a systematic man-
ner. The DFT based tight-binding method, DFTB,33 however,
allows one to address such large systems. The difference in
computational cost between DFT and DFTB is for the
present study found to be at least a factor of thirty. We, thus,
investigate the accuracy of DFTB compared to DFT on much
smaller antidot lattices in terms of the band structures.34

Since geometry relaxation is the most costly task in DFT we
also investigate the cost benefits of combining the two meth-

ods. By using DFT and elaborating on the role of spin, we
also wish to address some of the main features found spe-
cifically for antidot lattices on a tight-binding level of the
theory.

This paper is organized as follows. In Sec. II, we intro-
duce the antidot lattice systems and the methods used. The
equilibrium geometries and band structures obtained using
both DFT and DFTB and a combination thereof is given in
Sec. III together with a detailed investigation of the spin
properties. We conclude with a short summary.

II. SYSTEMS AND METHOD

The specific realization of the antidot lattice we consider
in this paper is a hexagonal �triangular� array of holes in a
graphene sheet as proposed by Pedersen et al.9 Within the
hexagonal unit cells there can be different hole geometries,
and two examples of high symmetry holes are shown in Fig.
1. Below, geometries are fully relaxed but as a starting point
ideal geometries using fixed bond lengths and angles of 120°
are constructed. These geometries furthermore provide a
straightforward notation for the structures. Thus, we desig-
nate antidot lattices with circular holes according to the no-
tation �L ,R��, where L is the side length of the unit cell and
R the hole radius, both measured in units of the graphene
lattice constant a=2.46 Å giving a C-C bond length of
1.42 Å. Similarly, for triangular holes, we apply the notation
�L ,D��, where D denotes the side length of the hole.19 The
holes are passivated with H using a C-H bond length of
1.1 Å and consist almost entirely of zigzag edges. These
structures are idealized but may well be within experimental
reach given the recent advancements.17,18

For the first principles calculations we have used the
ab initio pseudopotential DFT as implemented in the
SIESTA code35 to obtain the electronic structure and relaxed
atomic positions from spin-polarized DFT.36 We employ the
generalized gradient approximation �GGA� Perdew-Burke-
Ernzerhof �PBE� functional for exchange correlation.37

In the DFTB methodology, the Kohn-Sham orbitals are
expanded in a set of nonorthogonal tight-binding orbitals.
This basis along with all two-center integrals is obtained
from a self-consistent DFT calculation for the dimer, i.e., for
C-C, H-H, and C-H pairs in our case. In the present work, we
use the original �C,H� parametrization of Porezag et al.,33

which does not include spin. Once all required hopping and
overlap matrix elements are tabulated as a function of inter-
atomic distance, the electronic band structure is easily ob-
tained from a generalized eigenvalue problem. To relax ge-
ometries, however, the total energy of trial geometries must
be computed. This goes beyond ordinary tight-binding
schemes. In DFTB, the total energy is written as the sum

Etot = Ebs + �
n�m

Vrep�rnm� , �1�

where Ebs is the band structure energy, i.e., the sum of energy
eigenvalues for all occupied states, and Vrep is the so-called
repulsive potential. The repulsive energy is approximated as
a sum over atomic pairs n ,m with separation rnm. Similarly
to the two-center integrals, the repulsive potential is deter-

FIG. 1. �Color online� The unit cell of the �4,2���left� and
�6,5�� �right� system. The hexagonally shaped unit cells are re-
peated in plane to form a honeycomb lattice of antidots. The carbon
atoms �green/gray� are hydrogen terminated �white� along the hole
edges.
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mined by equating Eq. �1� to the DFT total energy for suit-
able reference systems taken to be the above dimers as well
as graphite.33 In this manner, geometry relaxation becomes
feasible in a tight-binding scheme with only a small compu-
tational cost.38

DFTB is thus a considerable simplification of DFT why
the latter is the most precise description.

III. RESULTS

For all considered structures a structural relaxation with
DFT leads to a shrinking of the hole, of the order of 1%,
resulting in C-C bonds close to the edges stretching and con-
tracting in the range of 1.39–1.45 �1.43 for �5,3.5��� Å. A
few bond lengths away from the hole edge the C-C bond
length remains unaltered at 1.42 Å.

In the case of relaxation with DFTB the picture is quite
similar. Edge-atom C-C bond lengths vary from
1.39–1.42 Å for all systems but �6,5��, which has varia-
tions of 1.38–1.44 Å. The shrinking of the hole size is
smaller than 1%.

The results for the band gaps for five different systems are
summarized in Table I. The band structures are calculated
using both DFT and DFTB on structures relaxed at different
accuracy levels and thus at different computational costs.
The combinations are not exhaustive but represent a relevant
set aimed at saving computational costs. The relaxation type
is given in the second row of Table I. DFTB is expected to
match DFT better as L /R increases due to decreased impor-
tance of edge details. The systems chosen here are mostly
edge-dominated �low L /R ratio� and thus represent the worst
case scenario.

Using DFT we find band gaps ranging from 0.2 to 1.5 eV
confirming that the antidot lattice turns the semimetallic
graphene into a semiconductor.9 However, only spin-
polarized DFT predicts a band gap for the �6,5�� structure,
which will be discussed in detail below.

Pedersen et al.9 demonstrated a scaling law between the
hole size and the band gap for large L /R ratios but no such
simple picture for small L /R ratios emerged. This trend
agrees well with our edge-dominated systems were no
simple scaling between the hole size and the band gap could
be identified.

As illustrated on Fig. 2, DFTB in general gives a larger
band gap than DFT �the circles lie consistently above the

dashed line�. This tendency is enhanced the more edge-
dominated the structure becomes. On average, the DFTB gap
is 20% larger than the DFT value for the four structures with
circular perforations. The discrepancy increases for struc-
tures with holes occupying a large portion of the unit cell,
such as �5,3.5��. Moreover, for �6,5�� the omission of spin
effects leads incorrectly to a vanishing DFTB band gap in
agreement with nonspin DFT. In the cases of the �4,2�� and
�6,5�� systems the band structures are shown in Fig. 3 left
and right, respectively, calculated using DFT �DFTB� in the
upper�lower� panel. We see that the shape of the bands
agrees qualitatively for the two methods.

A. Relaxation

We next analyze the importance of relaxation. The clear
trend is that relaxation increases the band gap. This is illus-
trated for DFT in Fig. 2 �crosses corresponding to the unre-
laxed structure lie below the dotted line�, as well as in Table
I for DFTB. Comparing unrelaxed results with fully relaxed
results we see from Table I a change in band gaps within
10% and 15% using DFTB and DFT, respectively. Only in
the case of DFT does the effect of relaxation increase the

TABLE I. The band gaps for various systems calculated with either DFT or DFTB using geometries
obtained with different methods for relaxation. All values are in eV.

DFT Nonspin DFT DFTB

Relaxation None DFT DFTB DFTB None DFTB

�4,2�� 0.93 1.01 0.97 0.97 0.99 1.05

�5,2.8�� 0.72 0.84 0.79 0.79 0.88 0.98

�5,3.5�� 1.27 1.51 1.35 1.35 1.72 1.74

�6,3.6�� 0.39 0.52 0.46 0.46 0.65 0.75

�6,5�� 0.24 0.22 0.22 0.00 0.00 0.00
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FIG. 2. �Color online� The band gaps for DFTB, DFT on DFTB-
relaxed geometry, and DFT on unrelaxed geometry plotted versus
pure DFT results. Points above �below� the dotted line are thus
overestimated �underestimated� compared to pure DFT. Note, that
DFTB calculates the electronic structure without spin and fails to
predict a band gap for the �6,5�� structure.
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more edge-dominated the system becomes. The change using
DFT for the �4,2�� system is 8% compared to 16% for
�5,3.5��.

It must be emphasized that larger differences between ini-
tial and relaxed geometries may well give rise to a larger
discrepancy between their band gaps. However, even for the
case of a single passivated edge-defect the difference in re-
laxed and unrelaxed DFT band gaps is less than 10%.

By relaxing the geometry with DFTB the DFT results are
improved from the non-relaxed case as shown in Fig. 2 �the
squares are closer to the dashed line than the crosses�. Com-
pared to pure DFT the largest difference in the band gap is
again found for the edge-dominated �5,3.5�� system: it is
now 11% compared to 16% without relaxation. For the larger
�6,5�� structure we find the same values as for pure DFT.
The DFT results are shown for both DFT-relaxed and DFTB-
relaxed structures on Fig. 3 indicated by thick and dotted
line, respectively. The different geometries do not change the
bands notably.

Using DFT on DFTB-relaxed structures is thus an ap-
proach with a good trade off between accuracy and compu-
tational cost. This finding is of great practical use, since
relaxation is very costly in DFT.

B. Magnetic properties

For the �6,5�� system with both non-spin-DFT and
DFTB there are three �one nearly doubly degenerate� bands
with weak dispersion at zero energy. Introducing spin leads
to a clear splitting of these bands, i.e., to the formation of a
band gap. For a comparison of DFT and DFTB, see Fig. 3,
right column. The three bands below �above� the Fermi level
are half-filled by majority �minority� spin electrons and are
thus completely spin-polarized. The size of the band gap is
thus also an indication of the robustness of the magnetic
state.39

The magnetic moments of the structures can be under-
stood as a consequence of graphene being a bipartite lattice
in the nearest neighbor approximation as shown by Lieb.20

According to Lieb’s theorem,20 the total magnetic moment
can be written as M =NA−NB where NA�B� is the number of
atoms occupying the A�B� sites of the bipartite graphene lat-
tice. Thus, if the angle between the zigzag edges is 0° or 60°
the edge-atoms belong to the same sublattice, while they
belong to different sublattices if the angle is 120° or 180°.
Consequently, the hexagonal hole is non-magnetic and the
triangular is magnetic. This is consistent with a Mulliken
analysis from the DFT calculations which shows a nonzero
magnetic moment only for the �6,5�� system of 3.00 �B per
unit cell. By inspection of the geometry we indeed find NA
−NB=3.

As a continuation of Lieb’s work, Inui et al.28 showed that
such sublattice imbalance results in there being NA−NB mid-
gap states with zero energy. We, thus, expect a degeneracy of
3 of the low-dispersion bands in the �6,5�� case.

In Fig. 3, lower right panel, there is one largely disper-
sionless band just below two almost completely degenerate
bands which have some dispersion especially at the �-point.
Such band curvature was also found for hydrogenated
graphene ribbons by Kusakabe et al.39 The �-point states for
each band are shown in Fig. 4, where the strong localization
is seen for the lowest band, Fig. 4�c�, whereas the bands with
curvature, Figs. 4�a� and 4�b�, yield less localized states.
Note also the alternation in the amplitudes of the states be-
tween sublattices as proposed by Inui et al.28 The state of the
highest occupied �spin-degenerate� band for the nonmagnetic
�6,3.6�� structure is shown for comparison in Fig. 4�d�. The
splitting as well as the curvature is less pronounced for the
unfilled states above the Fermi level showing particle-hole
asymmetry. This asymmetry is expected due to the breaking
of the symmetry of the bipartite lattice partly due to the DFT
treatment beyond nearest neighbor as well as the passivation
of the edges which changes the on-site potential at edge sites.
This is inherently also the case for DFTB. By inspection of
the SIESTA Hamiltonian35 we find an increase in on-site en-
ergy for passivated edge atoms as compared to atoms far
from the edge. Vanevic et al.19 find that a potential shift on
the edge atoms mainly causes a lifting of the degeneracy of
the flat bands, consistent with our observations.

As mentioned above, the global spin is given by the sub-
lattice imbalance. This does not, however, determine the lo-
cal spin. For the hexagonally shaped hole structures we find
not only a zero global spin, but also a zero spin on all atoms.
This explains the identical band gaps found using DFT with
and without spin. Such nonmagnetic solutions have been
found for finite graphene ribbons or graphene flakes by Jiang
et al.24 using DFT. They find a sudden transition from non-
magnetic to magnetic solutions going from a system size of
�3,3� and �4,3� with numbers indicating rings in the graphene
lattice along zigzag and armchair directions. Such transitions
are also seen in slits cut in graphene in a study by Kumazaki
et al.23 Viewing each edge in our hexagonal structures as
ribbons, the largest ribbon corresponds to a �4,3� ribbon
��6,3.6�� structure�. We, thus, expect local magnetization to
appear for slightly larger systems.

For �6,5�� we have the strongest polarization at the
middle of each edge with maximum magnetic moment per
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with majority �minority� electrons only.

FÜRST et al. PHYSICAL REVIEW B 80, 115117 �2009�

115117-4



atom being 0.24 �B. We note that each corner atom has a
magnetization −0.03 �B. The edge-atom magnetization is
below the maximum of 1 /3 �B for graphene ribbons when
the width becomes too large for edge-edge interactions. Our
systems thus have edge-edge interactions, which is expected
due to the ribbon width of 6 rings. A plot of the spin-
polarized density40 is shown in Fig. 5. The majority spins
reside mostly on the edges of the dominant sublattice sites.
Neighboring sites on the other sublattice have minority spin
polarization. Note also that the nonzero spin of the atoms far
from the edges indicating interaction between neighboring
hole edges.

IV. CONCLUSION

Using DFT and DFTB we have calculated band gaps in
various antidot lattice geometries. The computed band gaps
range from 0.2 to 1.5 eV. In general, DFTB gives larger band
gaps than DFT with the largest difference for nonmagnetic
structures of 44%. Geometry relaxation using either method
is found to increase the band gap with maximally 15%. Com-
bining the two methods by performing a DFT calculation on
a DFTB-relaxed structure is found to give a good trade off

between accuracy and computational cost facilitating the
treatment of larger systems. However, even for unrelaxed
geometries we find qualitative agreement with the DFT-
relaxed geometries. Trends for ideal geometries as presented
here can thus be investigated without any relaxation in the
nonmagnetic case.

Certain geometries are shown with DFT to have a nonzero
total magnetic moment which is understood via Lieb’s theo-
rem as a consequence of sublattice imbalance. For these
structures a spin-polarized treatment is needed to achieve
even qualitative results for the band gaps. Local spin, which
can occur regardless of the total magnetic moment, is not
observed for very edge-dominated systems. Sublattice imbal-
ance leads to the occurrence of low-dispersion midgap
bands. We find a lifting of degeneracy of these otherwise
degenerate bands on a perfect bipartite lattice as well as a
considerable spin-splitting. These completely spin-polarized
states are primarily located at the hole edges.
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